

279

PCS

DOMAINES D'APPLICATION

- Equipements électroniques
 - Instrumentation et commutateurs électriques
 - Régulateurs/ Panneaux de commande
 - Appareils de tableau
 - Plaquettes de circuits

FICHE TECHNIQUE

CARACTERISTIQUES ET AVANTAGES

- Ininflammable
- Grande vitesse d'évaporation
- · Faibles résidus
- Forte rigidité diélectrique
- Numéro d'enregistrement NSF K2 134012
- Aucun COV/matériau appauvrissant la couche d'ozone
- Elimine les lubrifiants fluorés
- Applicable sans danger sur le plastique
- Non corrosif

CONDITIONNEMENT

Aérosol

MODE D'EMPLOI

Appliquer le produit directement sur la surface à nettoyer. Essuyer la pièce/l'équipement avec un chiffon absorbant ou laisser la pièce/l'équipement sécher à l'air.

DESCRIPTION

Chesterton® 279 PCS est un solvant pour nettoyage de précision de pointe conçu spécifiquement pour remplacer le CFC-113, le HCFC-141b et d'autres matériaux appauvrissant la couche d'ozone.

Il s'agit d'un solvant de nettoyage ininflammable, non corrosif et très efficace pour l'élimination de la graisse, des huiles, des flux, de la saleté et de la poussière sur les équipements électriques et électroniques.

Ce système de solvant n'appauvrissant pas la couche d'ozone utilise une nouvelle technologie HFE pour éliminer rapidement la saleté résiduelle légère, les particules, les lubrifiants fluorés tels que la graisse Krytox®, les fluoropolymères et les autres éléments de contamination. Chesterton 279 PCS est spécifiquement conçu pour rénover et améliorer la continuité électrique des équipements sous tension.

Propriétés physiques	Chesterton 279	CFC-113	HCFC-141b	HCFC-25ca/cb	HFC-4310
Poids moléculaire	250	187	117	203	252
Point d'ébullition en °C	60	48	32	54	54
Point de congélation en °C	-135	-35	-103	-131	-80
Point d'éclair	Aucune	Aucune	Aucune	Aucune	Aucune
Plage d'inflammabilité dans l'air	Aucune	Aucune	7,1–18,6¹	Aucune	Aucune
Densité du liquide ²	1,52	1,56	1,23	1,55	1,58
Tension superficielle ³	13,6	17,3	19,3	16,2	14,1
Solubilité dans l'eau4	<20	170	210	330	140

1 % en vol. conformément à l'ASTM E681-94 à 100 °C 2 g/ml à 25 °C 3 dynes/cm à 25 °C 4 ppm en poids

Propriétés ambiantes	Chesterton 279	CFC-113	HCFC-141b	HCFC-25ca/cb	HFC-4310
Potentiel d'appauvrissement de la couche d'ozone ¹ - PDO	0,00	0,80	0,10	0,03	0,00
Potentiel de réchauffement global ² - PRG	500	5000	630	170/530	1300
Durée de vie atmosphérique - ALT (années)	4,1	85,0	9,4	2,5 – 2,6	17,1

1 CFC - 11 = 1,0 2 GWP - 100 ans Horizon temporel d'intégration (HTI) Remarque : Le rapport ca/cb de HCFC-225 est de 45/55

Matériaux compatibles avec le Chesterton 279						
Métaux	Plastiques	Elastomères				
Aluminium Cuivre Acier au carbone Acier inoxydable 302 Laiton Molybdène Tantale Tungstène Alliage Cu/Be C172 Alliage Mg AZ32B	Matériaux acryliques Polyéthylène Polypropylène Polycarbonate Polyester Epoxy PMMA PET ABS	Caoutchouc butyle* Caoutchouc naturel Caoutchouc nitrile EPDM				

Compatible après 1 h d'exposition à la température d'ébullition. "Le caouthouc buyle est le mieux adapté à une exposition prolongée > 1 mois Exceptions : le PTFE et le caouthouc de silicone gonfleiser ment le reune subit une oxydation de surface pendant le vieillissement thermique. Essal de compatibilité pour les matériaux non énumérés

Avant d'utiliser ce produit, veuillez consulter la Fiche de données de sécurité (FDS).

*La graisse Krytox® est une marque de commerce de Chemours Company FC, LLC

860 Salem Street, Groveland, MA 01834 USA 978-469-6888 chesterton.com

© 2022 A.W. Chesterton Company ® Marque déposée, propriété exclusive de A.W. Chesterton Company aux Etats-Unis et dans d'autres pays, sauf mention contraire. Les informations techniques reflètent les résultats obtenus lors d'essais en laboratoire, et elles sont fournies uniquement pour indiquer des propriétés générales. Comme de nombreuses applications réelles dépassent les connaissances et/ou le contrôle de Chesterton, l'utilisateur du produit doit déterminer si les produits qu'il prévoit d'utiliser conviennent à son usage particulier et assumer la responsabilité des risques associés. CHESTERTON N'OFFRE AUCUNE GARANTIE, DIRECTE OU INDIRECTE, Y COMPRIS LES GARANTIES DE QUALITE MARCHANDE ET DE PERFORMANCE CONCERNANT LES UTILISATIONS SPECIFIQUES.